## Module Handbook

• Dynamischer Default-Fachbereich geändert auf WIW

# Module WIW-QMT-MAT-M-1

## Module Identification

Module Number Module Name CP (Effort)
WIW-QMT-MAT-M-1 Mathematics in Economics 9.0 CP (270 h)
WIW-QMT-MAT8-M-1 Mathematics in Economics 8.0 CP (240 h)

## Basedata

CP, Effort 9.0 CP = 270 h 1 Sem. in WiSe [1] Bachelor (General) [DE] German Stockis, Jean-Pierre, Dr. (WMA | DEPT: MAT) Stockis, Jean-Pierre, Dr. (WMA | DEPT: MAT) [MAT-Service] Mathematics for other Departments [WIW-82.21-SG#2009] B.Sc. Business Studies (2009) [2009] [NORM] Active

## Notice

Die Anpassung von 9 LP auf 8 LP durch Reduktion des Selbststudiums um 30 h erfolgt gemäß dem tatsächlichen Arbeitsaufwand auch im Vergleich zur Höheren Mathematik I.

## Courses

Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
4V+2U WIW-QMT-MAT-K-1
Mathematics in Economics
P 90 h 150 h
U-Schein
ja PL1 8.0 WiSe
• About [WIW-QMT-MAT-K-1]: Title: "Mathematics in Economics"; Presence-Time: 90 h; Self-Study: 150 h
• About [WIW-QMT-MAT-K-1]: The study achievement "[U-Schein] proof of successful participation in the exercise classes (ungraded)" must be obtained.
• It is a prerequisite for the examination for PL1.

## Examination achievement PL1

• Form of examination: written exam (Klausur) (120 Min.)
• Examination Frequency: each semester
• Examination number: 80113 ("Mathematics for Economists")

## Contents

• Linear algebra: vectors and matrices, systems of linear equations, eigenvalues and eigenvectors, planes and hyperplanes.
• Analysis: functions, differential calculus in one-dimensional and multi-dimensional space, Lagrange, applications of differential.

calculus, integral calculus in one-dimensional space, first-order differential equations.

• Linear optimization: graphical solution of linear programs.

## Competencies / intended learning achievements

Upon successful completion of the module, students will be able to
• reproduce the basic concepts and statements of linear algebra and analysis.
• handle the terms, statements and methods of the lecture independently and apply them in examples.
• solve linear optimization problems, as they have learned and practiced this by example.
• further develop the concepts and methods of linear algebra and analysis specific to their subject, as well as their practical application, which are needed in the further course of study, as they develop a solid basis for the proper handling of mathematics in economics to have.

## Literature

• Sydsaeter & Hammond: „Mathematik für Wirtschaftswissenschaftler“, Pearson

Exercises

None

None

## References to Module / Module Number [WIW-QMT-MAT8-M-1]

Course of Study Section Choice/Obligation
[WIW-82.?-SG#2021] B.Sc. Business Studies (2021) [2021] [Fundamentals] Scientific Basics and Methods [P] Compulsory
[WIW-82.?-SG#2021] B.Sc. Business Studies with Technical Qualifications (2021) [2021] [Fundamentals] Scientific Basics and Methods [P] Compulsory

## References to Module / Module Number [WIW-QMT-MAT-M-1]

Course of Study Section Choice/Obligation
[WIW-82.21-SG#2009] B.Sc. Business Studies (2009) [2009] [Fundamentals] Quantitative Methods [P] Compulsory
[BI-82.464-SG] B.Sc. Facility Management [Core Modules (non specialised)] Technik [P] Compulsory
[WIW-82.789-SG#2009] B.Sc. Business Studies with Technical Qualifications (2009) [2009] [Fundamentals] Quantitative Methods [P] Compulsory
[BI-82.D35-SG#2020] B.Sc. Real Estate and Facility Management [2020] [Core Modules (non specialised)] Ökonomie [P] Compulsory