Module Handbook

  • Dynamischer Default-Fachbereich geändert auf PHY

Notes on the module handbook of the department Physics

Die hier dargestellten Studiengang-, Modul- und Kursdaten des Fachbereichs Physik [PHY] befinden sich noch in Entwicklung und sind nicht offiziell.

Die offiziellen Modulhandbücher finden Sie unter https://www.physik.uni-kl.de/studium/modulhandbuecher/ .

Module PHY-SP-7-M-7

Schwerpunktmodul Messtechnik (M, 16.0 LP)

Module Identification

Module Number Module Name CP (Effort)
PHY-SP-7-M-7 Schwerpunktmodul Messtechnik 16.0 CP (480 h)

Basedata

CP, Effort 16.0 CP = 480 h
Position of the semester 2 Sem. from WiSe/SuSe
Level [7] Master (Advanced)
Language [DE] German
Module Manager
Lecturers
Area of study [PHY-TECHNO] TechnoPhysics
Reference course of study [PHY-88.B90-SG] M.Sc. TechnoPhysics
Livecycle-State [NORM] Active

Courses

Lehrveranstaltungen im Umfang von mindestens 16 LP aus folgendem Lehrveranstaltungsangebot (je nach Angebot):
Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
2V+1U MV-MTS-86605-K-4
Systems Theory
WP 42 h 48 h - - see comments 3.0 SuSe
2V+2U MV-MTS-86604-K-4
Applied Control Theory
WP 56 h 94 h - - see comments 5.0 WiSe
2V+1U MV-MTS-86601-K-4
physics-based measuring technique
WP 42 h 48 h - - see comments 3.0 SuSe
2V+1U MV-MTS-86610-K-7
Analog and digital measuring signal processing
WP 42 h 78 h - - see comments 4.0 WiSe
2V MV-MTS-86603-K-4
Production metrology
WP 28 h 62 h - - see comments 3.0 SuSe
2V+1U MV-MTS-86606-K-4
Optical Measuring Technique
WP 42 h 48 h - - see comments 3.0 WiSe
  • About [MV-MTS-86605-K-4]: Title: "Systems Theory"; Presence-Time: 42 h; Self-Study: 48 h
  • About [MV-MTS-86604-K-4]: Title: "Applied Control Theory"; Presence-Time: 56 h; Self-Study: 94 h
  • About [MV-MTS-86601-K-4]: Title: "physics-based measuring technique"; Presence-Time: 42 h; Self-Study: 48 h
  • About [MV-MTS-86610-K-7]: Title: "Analog and digital measuring signal processing"; Presence-Time: 42 h; Self-Study: 78 h
  • About [MV-MTS-86603-K-4]: Title: "Production metrology"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-MTS-86606-K-4]: Title: "Optical Measuring Technique"; Presence-Time: 42 h; Self-Study: 48 h
Some of the courses take place at irregular intervals. A current overview of the courses offered can be found in the campus management system of the TU Kaiserslautern (https://www.kis.uni-kl.de).

Note on credits, test performances and examinations:

The lecturers determine the credits, test performances and examinations. The examination modalities follow the practices of the respective oganizing department or institution.

Students are strongly advised to inform themselves at the respective lecturers at the beginning of the course.

Evaluation of grades

All partial module examinations have to be passed. The module grade is the arithmetic mean of all partial examination grades.


Contents

  • Continuous time, linear time-invariant systems (LTI, causal systems, convolution)
  • Continuous time Fourier series and Fourier transformation (derivation, properties, correlations)
  • Discrete-time linear shift-invariant systems (LSI, causal system, convolution sum)
  • Discrete-time Fourier series and Fourier transformation (derivation, properties, correlations, interpolation, decimation)
  • Discrete Fourier transformation (DFT, fast Fourier transformation, zero padding, window function)
  • The Z transformation
  • Scanning of continuous time signals (correlations CTFT and DTFT, scan theorem, reconstruction of discrete-time signals, discrete-time processing of continuous time signal)
  • Discrete-time filters (FIR and IIR filter, CIC filter)
  • Description and behavior of multivariable systems
  • Stability, controllability and observability
  • Structures and properties of multivariable control circuits
  • Controller design through pole assignment of poles, optimum control, observer design
  • Kalman filter
  • Introduction to metrology
  • Measurement of mechanical variables: path, angle, speed, acceleration, elongation, force, torque
  • Measurement of electrical variables: current, voltage, output
  • Measurement of process variables: temperature, flow rate, pressure, level
  • Time measurement, electromagnetic field sizes
  • Sound field sizes, radioactivity
1. Introduction and terminology: signal terms, types and categories of signals, description of analog and digital measurement signals in the time range, signal description with basic functions, sequences

2. Description of analog signals in the frequency range: Fourier series, Fourier transformation, autocorrelation, power spectral density, Hilbert transformation

3. Measurement and processing of analog sensor signals: pure current and pure voltage circuits, analog measuring instruments, analog filters, carrier amplifiers, analog signal processing with operational amplifiers, AC measuring bridges, floating sensor, instrumentation amplifier, analog oscilloscope, analog function generator

4. Analog-digital converter and description of digital signals in the frequency range: A/D conversion, sample and hold element, quantification, discrete-time Fourier series, DTFT, scan theorem, over-sampling, down-sampling, DFT, Z transformation

5. Measurement and processing of digital signals: discrete-time estimation of energy spectra, structure function, digital filters, designing of digital filters, bus systems and integration into LabView, signal detection, statistical analysis and modeling of signals, ARMA models, prediction error, maximum likelihood estimation, digital multimeter, digital oscilloscope

6. Introduction to mathematical morphology: basic morphological operations - dilation, erosion, opening, closing, hough transformation, segmentation methods, Sobel filters, watershed transformation

The lecture will be supplemented with integrated exercises using practical examples in Matlab and LabView as well as with using instruments to generate and process signals.

  • Basic terminology of production metrology
  • Geometric tolerances pursuant to DIN EN ISO 1101
  • Material measures, manual measuring instruments, gauges
  • Optical and tactile multisensor – coordinate measuring technology, form measuring technology and roughness measuring technology
  • Measuring uncertainty budget pursuant to GUM
  • Test equipment capability
  • Introduction to geometrical optics
  • Fermat’s principle
  • Optical illustrations
  • Microscopes
  • Köhler illumination
  • Aberrations
  • Jones formalism
  • Maxwell equations
  • Deflection on a lattice
  • Wave-optical resolution
  • Fraunhofer diffraction
  • Modulation transfer function
  • Selected optical measuring instruments

Competencies / intended learning achievements

Die erfolgreiche Absolvierung dieses Moduls führt zu folgenden Kenntnissen & Fertigkeiten (als Lernergebnissen) und Kompetenzen:
  • Struktur und Funktion von Systemen soweit zu verstehen, dass eine Umsetzung in die Praxis möglich ist.
  • ein strukturiertes Fachwissen (Verfügungswissen) zu den Teilgebieten und Themen der Messtechnik, die inhaltlicher Gegenstand der oben genannten Lehrveranstaltungen dieses Vertiefungsmoduls sind (Fachkompetenz)
  • das Verständnis des Zusammenwirkens von theoretischen Betrachtungen und praktischer Handhabung von Messsystemen
  • ein Überblickswissen (Orientierungswissen) zu den aktuellen, grundlegenden Fragestellungen der Messtechnik (Fachkompetenz)
  • das Verständnis der Abweichungen von theoretischen Vorhersagen und experimentellen Ergebnissen
  • die Vertrautheit mit den Erkenntnismethoden, speziell bezogen auf die Messtechnik und Erfahrungen in der exemplarischen Anwendung dieser Methoden in der Ingenieurswissenschaft (Methodenkompetenz)
  • die Vertrautheit mit den Arbeitsmethoden, speziell bezogen auf die Messtechnik und Erfahrungen in der exemplarischen Anwendung dieser Methoden in der Ingenieurswissenschaft (Methodenkompetenz)
  • die Beherrschung der wichtigsten Arbeitsstrategien und Denkformen und damit auch die Vertrautheit mit den Strategien, Probleme der Messtechnik selbstständig zu identifizieren, zu strukturieren und systematisch zu lösen (Methoden- & Selbstkompetenz)

Literature

  • A. V. Oppenheim und A. S. Wilsky, Signale und Systeme, VCH Verlag 1992
Jan Lunze: „Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung“
  • P. Profos, Grundlagen der Messtechnik, Oldenbourg Verlag, 1997
To be announced once the course begins
  • Tilo Pfeifer; Fertigungsmesstechnik; Oldenbourg 2001; ISBN 3-486-25712-9
  • H.-J. Warnecke, W. Dutschke: Fertigungsmesstechnik; Springer 1984; ISBN 3-540-11784-9
  • M. Born, Optik, Springer Verlag 1985
  • T. E. Furtak und M. V. Klein, Optics, Wiley Verlag 1986

Materials

depending on choice, see respective course description

Registration

depending on choice, see respective course description

Requirements for attendance (informal)

depending on choice, see respective course description

Requirements for attendance (formal)

None

References to Module / Module Number [PHY-SP-7-M-7]

Module-Pool Name
[PHY-SP-MV-MPOOL-7] Schwerpunktmodule aus dem Bereich Maschinenbau und Verfahrenstechnik: