Module Handbook

  • Dynamischer Default-Fachbereich geändert auf PHY

Notes on the module handbook of the department Physics

Die hier dargestellten Studiengang-, Modul- und Kursdaten des Fachbereichs Physik [PHY] befinden sich noch in Entwicklung und sind nicht offiziell.

Die offiziellen Modulhandbücher finden Sie unter https://www.physik.uni-kl.de/studium/modulhandbuecher/ .

Module PHY-SP-5-M-7

Schwerpunktmodul Thermodynamik (M, 16.0 LP)

Module Identification

Module Number Module Name CP (Effort)
PHY-SP-5-M-7 Schwerpunktmodul Thermodynamik 16.0 CP (480 h)

Basedata

CP, Effort 16.0 CP = 480 h
Position of the semester 2 Sem. from WiSe/SuSe
Level [7] Master (Advanced)
Language [DE] German
Module Manager
Lecturers
Area of study [PHY-TECHNO] TechnoPhysics
Reference course of study [PHY-88.B90-SG] M.Sc. TechnoPhysics
Livecycle-State [NORM] Active

Courses

Lehrveranstaltungen im Umfang von mindestens 16 LP aus folgendem Lehrveranstaltungsangebot (je nach Angebot):
Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
3V+1U MV-TD-86053-K-4
Thermodynamics of Mixtures
WP 56 h 94 h - - see comments 5.0 WiSe
3V+1U MV-TD-86052-K-4
Heat Transfer
WP 56 h 94 h - - see comments 5.0 SuSe
2V+1U MV-TD-86056-K-4
Molecular Thermodynamics
WP 42 h 48 h - - see comments 3.0 WiSe
2V MV-TD-86057-K-7
Computerlab Molecular Simulation
WP 28 h 62 h - - see comments 3.0 SuSe
2V MV-TD-86061-K-4
Thermodynamics of Transport Processes
WP 28 h 62 h - - see comments 3.0 WiSe
1V+1U MV-TD-86062-K-4
Modeling, simulation and optimization in process engineering
WP 28 h 62 h - - see comments 3.0 WiSe
2V MV-LTD-86417-K-4
Energy process and systems engineering
WP 28 h 62 h - - see comments 3.0 WiSe
3V+1U MV-TD-86054-K-7
Process Thermodynamics
WP 56 h 64 h - - see comments 4.0 SuSe
2V MV-TD-86071-K-7
Applications of magnetic resonance in natural sciences and engineering
WP 28 h 62 h - - see comments 3.0 WiSe
2V MV-TD-86079-K-4
Thermodynamics of electrolyte solutions
WP 28 h 62 h - - see comments 3.0 WiSe
2V MV-LTD-86082-K-7
Interfacial Thermodynamics
WP 28 h 62 h - - see comments 3.0 SuSe
1V+1U MV-TD-86058-K-7
Polymerthermodynamik
WP 28 h 62 h - - see comments 3.0 *
  • About [MV-TD-86053-K-4]: Title: "Thermodynamics of Mixtures"; Presence-Time: 56 h; Self-Study: 94 h
  • About [MV-TD-86052-K-4]: Title: "Heat Transfer"; Presence-Time: 56 h; Self-Study: 94 h
  • About [MV-TD-86056-K-4]: Title: "Molecular Thermodynamics"; Presence-Time: 42 h; Self-Study: 48 h
  • About [MV-TD-86057-K-7]: Title: "Computerlab Molecular Simulation"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TD-86061-K-4]: Title: "Thermodynamics of Transport Processes"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TD-86062-K-4]: Title: "Modeling, simulation and optimization in process engineering"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-LTD-86417-K-4]: Title: "Energy process and systems engineering"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TD-86054-K-7]: Title: "Process Thermodynamics"; Presence-Time: 56 h; Self-Study: 64 h
  • About [MV-TD-86071-K-7]: Title: "Applications of magnetic resonance in natural sciences and engineering"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TD-86079-K-4]: Title: "Thermodynamics of electrolyte solutions"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-LTD-86082-K-7]: Title: "Interfacial Thermodynamics"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TD-86058-K-7]: Title: "Polymerthermodynamik"; Presence-Time: 28 h; Self-Study: 62 h
Some of the courses take place at irregular intervals. A current overview of the courses offered can be found in the campus management system of the TU Kaiserslautern (https://www.kis.uni-kl.de).

Note on credits, test performances and examinations:

The lecturers determine the credits, test performances and examinations. The examination modalities follow the practices of the respective oganizing department or institution.

Students are strongly advised to inform themselves at the respective lecturers at the beginning of the course.

Evaluation of grades

All partial module examinations have to be passed. The module grade is the arithmetic mean of all partial examination grades.


Contents

  • Partial molar properties
  • Thermal and caloric properties of mixtures:
    • Excess volume, excess enthalpy
    • Thermal equations of state
  • Phase equilibria (phenomenology):
    • Phase diagrams
    • Two-phase and multiphase equilibria (gas, liquid, solid)
    • Azeotropic and hetero-azeotropic systems
    • Equilibira with supercritical components
  • Fundamentals of modeling mixtures:
    • Fundamental equations
    • Legendre-Transformation
    • Gibbs energy, Helmholtz energy
    • Fugacity, fugacity coefficient
    • Activity, activity coefficient
    • Models of the Gibbs excess energy
    • Maxwell relations
    • Gibbs-Duhem relation
    • Gibbs phase rule
  • Phase equilibria (modeling and simulation):
    • Vapor-liquid equilibria (Raoult‘s lay)
    • Gas solubility (Henry’s law)
    • Liquid-liquid equilibria
    • Solid-liquid equilibria
    • Membrane equilibria
  • Fundamentals of heat conduction: Fourier's law, thermal conductivity, coefficient of thermal conductivity
  • Steady-state and transient one-dimensional heat conduction problems
  • Multidimensional heat conduction problems, numerical solutions
  • Counter-flow and parallel-flow heat exchangers
  • Fundamentals of convective heat transfer: differential balance equations, boundary layer equations, derivation of dimensionless ratios
  • Nusselt correlations for forced and free convection in single-phase heat transfer
  • Heat transfer of condensation and evaporation
  • Fundamentals of radiative heat transfer: absorption, emission, transmission, black and gray bodies
  • Heat transfer between black and gray bodies
  • Basic concepts of statistical mechanics
    • ensembles
    • phase space
    • partition function
    • thermodynamic state variables
    • special cases
  • Molecular simulation
    • Monte Carlo simulation (MC)
    • molecular dynamics (MD)
    • effective pair potentials
  • Molecular simulation techniques (Monte Carlo and molecular dynamics)
  • Interpretation of simulation results
  • Applications in thermodynamics
  • Relations, similarities and differences between heat transport, momentum transport, and mass transport
  • Driving potentials
  • Cross effects (Dufour, Soret, etc.)
  • Irreversible thermodynamics
  • Coupling of transport equations with balance equations
  • Transport properties (heat conductivity, viscosity, diffusion coefficient)
  • Fickian diffusion (binary, multi-component)
  • Maxwell-Stefan diffusion (binary, multi-component)
  • Relations between Fickian and Maxwell-Stefan diffusion
  • Diffusion coefficients
  • Mass transfer
  • Film theory
  • Penetration theory
  • Balance equations
  • Algebraic systems
  • Differential equations
  • Simulation of ODEs
  • Flow sheet simulation
  • Linear and nonlinear optimization
  • Mixed integer optimization
  • Pareto optimization
  • Thermodynamic fundamentals of combustion (technical combustion)
  • Chemical fundamentals of combustion and the formation of pollutants
  • Process engineering for waste gas treatment (incineration plants, CO2-free power plants)
  • Exergy analysis
  • Conceptual process design
  • Process flow diagram
  • Process simulation
  • Distillation fundamentals and practice
  • Distillation lines
  • Residue curves
  • ∞/∞-analysis
  • Design of column sequences
  • Synthesis and analysis of industrial chemical processes
  • Energetic process optimization
  • Reactive distillation
  • Physical principles of magnetic resonance (for nuclear spins and electron spins)
  • One- and multidimensional spectroscopy
  • Imaging
  • Diffusion and velocity encoded measurements
  • Modern hyperpolarization methods to increase the sensitivity of NMR
  • Various application examples of the different magnetic resonance techniques
  • Fundamentals of chemical thermodynamics
  • Electrolytes, dissociation, pH
  • Electrolyte solutions, chemical potentials and activities
  • Activity coefficient models for electrolyte solutions
  • Electrochemical potential and phase equilibrium
  • Electrochemical cells
  • Applications (batteries, fuel cells, electrolysis)
  • Importance and function of interfaces in nature and technology with special emphasis on challenges in process engineering and mechanical engineering.
  • Introduction to the thermodynamics of interfaces with special emphasis on their application in technology.
  • Properties of different pairings of phases at interfaces (combinations of solid, liquid, gas) and their technical relevance.
  • Properties of different three-phase interfacial contacts (e.g. solid-liquid-gas or liquid-liquid-gas) as well as their technical relevance.
  • Experimental determination of interfacial properties (e.g. interfacial tension and wetting behavior) for different phase pairings (e.g. gas-liquid and solid-liquid).
  • Theoretical methods for determining interfaces properties: Density functional theory and molecular simulation
  • Einführung in die Thermodynamik der Polymere unter anwendungstechnischen Aspekten
  • Einführung in die Herstellung und das Vorkommen von Polymeren in Natur und Technik
  • Unterscheidung zu Stoffsystemen ohne Polymere
  • Experimentelle Bestimmung von Stoffeigenschaften (z.B. Molmassenverteilung) und Stoffdaten (z.B. Phasenverhalten von Polymerlösungen)
  • Modellierung von Polymeren in der Thermodynamik: Flory-Huggins Theorie und ihre Erweiterungen
  • Umgang mit Polydispersität in Experiment und Theorie

Competencies / intended learning achievements

Die erfolgreiche Absolvierung dieses Moduls führt zu folgenden Kenntnissen & Fertigkeiten (als Lernergebnissen) und Kompetenzen:
  • die Thermodynamik und ihre Struktur soweit zu verstehen, dass die gelehrten Methoden und Denkweisen auf Fragestellungen aus diesem Bereich angewendet werden können.
  • ein strukturiertes Fachwissen (Verfügungswissen) zu den Teilgebieten und Themen der Thermodynamik, die inhaltlicher Gegenstand der oben genannten Lehrveranstaltungen dieses Vertiefungsmoduls sind (Fachkompetenz)
  • das Verständnis des Zusammenwirkens von theoretischen Betrachtungen und praktischer Handhabung von thermodynamischen Prozessen
  • ein Überblickswissen (Orientierungswissen) zu den aktuellen, grundlegenden Fragestellungen der Thermodynamik (Fachkompetenz)
  • das Verständnis der Abweichungen von theoretischen Vorhersagen und experimentellen Ergebnissen
  • die Vertrautheit mit den Erkenntnismethoden, speziell bezogen auf die Thermodynamik und Erfahrungen in der exemplarischen Anwendung dieser Methoden in der Ingenieurwissenschaft (Methodenkompetenz)
  • die Vertrautheit mit den Arbeitsmethoden, speziell bezogen auf die Thermodynamik und Erfahrungen in der exemplarischen Anwendung dieser Methoden in der Ingenieurwissenschaft (Methodenkompetenz)
  • die Beherrschung der wichtigsten Arbeitsstrategien und Denkformen und damit auch die Vertrautheit mit den Strategien, Probleme der Thermodynamik selbstständig zu identifizieren, zu strukturieren und systematisch zu lösen (Methoden- & Selbstkompetenz)

Literature

  • Gmehling, J., Kolbe, B.: Thermodynamik, 2. Auflage, VCH Verlag, Weinheim (1992)
  • Tester, J. W., Modell, M.: Thermodynamics and its applications, Prentice-Hall, Englewood Cliffs (1997)
  • Prausnitz, J. M., Lichtenthaler, R. N., de Azevedo, E. G.: Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edition, Prentice-Hall, Englewood Cliffs (1999)
  • Stephan, K., Mayinger, F.: Thermodynamik, Band 2, 14. Auflage, Springer-Verlag, Berlin (1999)
  • Walas, S. M.: Phase Equilibria in Chemical Engineering, Butterworth (1991)
  • Pfennig, A.: Thermodynamik der Gemische, Springer-Verlag, Berlin (2004)
  • F. P. Incropera, D. P. DeWitt: Introduction to Heat Transfer, 4th ed.; John Wiley & Sons, New York 2001
  • H.D. Baehr, K. Stephan: Wärme- und Stoffübertragung; 5. Auflage, Springer, Berlin 2006
  • Verein Deutscher Ingenieure: VDI–Wärmeatlas, Berechnungsblätter für den Wärme¬übergang, 10. Auflage; Hrsg. VDI – Gesellschaft Verfahrens¬technik und Chemie-ingenieurwesen (GVC), VDI-Verlag, Düsseldorf 2006
  • Y. Bayazitoglu, M.N. Özisik: Elements of Heat Transfer; McGraw-Hill, New York 1988
  • J.P. Holman: Heat Transfer, 9th ed.; McGraw-Hill, New York 2001
  • Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids, Oxford University Press, 1989
Will be announced during the course.
  • B. E. Poling, J.M. Prausnitz, J. P. O’Connell: The Properties of Gases and Liquids, McGraw Hill Professional New York (2000)
  • R. Taylor, R. Krishna: Multicomponent Mass Transfer, Wiley New York (1993)
  • R. B. Bird, W. E. Steward, E.N. Lightfoot: Transport Phenomena, Wiley New York (2007)
  • Biegler et al: Systematic Methods of Chemical Process Design, Prentice Hall, 1997
  • Engeln-Müllges et al: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen, Springer Heidelberg, 2011
  • Ullmann’s Modeling and Simulation, Wiley-VCH, Weinheim, 2007.
  • H. D. Baehr, S. Kabelac: Thermodynamik, 13. Auflage, Springer, Berlin, 2006;
  • K. Kugeler: Energietechnik, Springer Vieweg; 3. Auflage. 2014;
  • R. Zahoransky: Energietechnik: Systeme zur Energieumwandlung, Springer Vieweg; 6. Auflage 2012
  • E. Blaß, Entwicklung verfahrenstechnischer Prozesse: Methoden, Zielsuche, Lösungssuche, Lösungsauswahl. 2., vollst. überarb. Aufl. – Berlin: Springer (1997)
  • M.F. Doherty, M.F. Malone, Conceptual design of distillation systems. – Boston: McGraw-Hill (2001)
  • H.G. Hirschberg, Handbuch Verfahrenstechnik und Anlagenbau: Chemie, Technik, Wirtschaftlichkeit. – Berlin: Springer (1999)
  • K. Sattler, Thermische Trennverfahren: Grundlagen, Auslegung, Apparate. 3. Aufl. – Weinheim: VCH (2001)
  • H. Schuler, Prozeßsimulation. – Weinheim: VCH (1995)
  • Malcolm H. Levitt: Spin Dynamics, Wiley, ISBN 978-0-470-51117
  • Harald Günther: NMR Spectroscopy, Wiley, ISBN 0 471 95199 4
  • Paul T. Callaghan: Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, ISBN 978-0-19-853997-1
  • L.T. Kuhn: Hyperpolarization Methods in NMR Spectroscopy, Topics in Current Chemistry, Vol. 338, Springer, ISBN: 978-3-642-39728-8
  • K. S. Pitzer: Activity Coefficients in Electrolyte Solutions, CRC Press, 1991.
  • J. F. Zemaitis Jr.: Handbook of Aqueous Electrolyte Solutions, New York, Design Institute for Physical Property Data, 1986.
  • G. Wedler: Lehrbuch der Physikalischen Chemie, 4. völlig überarbeitete und erweiterte Auflage, Wiley-VCH, Weinheim, 1997.
  • R. A. Robinson, R. H. Stokes: Electrolyte Solutions, 2nd rev. ed., Dover Publications, Mineola, NY, 2002.
  • J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford University Press, Oxford, 1989.
  • A.I. Rusanov, V.A. Prokhorov: Interfacial Tensiometry, Elsevier, Amsterdam, 1996.
  • J. Lyklema, Fundamentals of interface and Colloid Science, Academic Press Ltd., London, 1991.
  • M. Kahlweit, Grenzflächenerscheinungen, Steinkopff Verlag, Darmstadt, 1981.
  • R. Evans, Fundamentals of Inhomogeneous Fluids, Dekker, New York, 1992, Chap. 3
  • S. Tapavicza, J.M. Prausnitz, Chemie Ingenieur Technik 47 (2005) 552-562.
  • J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, Prentice-Hall, 1999.
  • G. Sadowski, Thermodynamik der Polymerlösungen, Habilitationsschrift, Shaker-Verlag, 2003.
  • B.A. Wolf, S. Enders, Polymer Thermodynamics - Liquid Polymer-Containing Mixtures, Springer-Verlag, 2010.
  • R. Koningsveld, W.H. Stockmayer, E. Nies, Polymer Phase Diagrams: A Textbook, Oxford University Press 2001.
  • M.T. Rätzsch, H. Kehlen, Continuous Thermodynamics of Polymer Systems, Prog. Polym. Sci. 14 (1989) 1-46.
  • M.T. Rätzsch, C. Wohlfarth, Continuous Thermodynamics of Copolymer Systems, Advances in Polymer Science 98 (1989) 51-114.
  • P.J. Flory, Principles of Polymer Chemistry, Cornell University Press 1953.
  • Maurer, G. (Herausgeber): Thermodynamic Properties of Complex Fluid Mixtures. Wiley-VCH GmbH & Co. KGaA; 2004.

Materials

depending on choice, see respective course description

Registration

depending on choice, see respective course description

Requirements for attendance (informal)

depending on choice, see respective course description

Requirements for attendance (formal)

None

References to Module / Module Number [PHY-SP-5-M-7]

Module-Pool Name
[PHY-SP-MV-MPOOL-7] Schwerpunktmodule aus dem Bereich Maschinenbau und Verfahrenstechnik: