Module Handbook

  • Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020 verabschiedet.

Ausnahmen:

Module MV-TM-257-M-4

Contact Mechanics (M, 3.0 LP)

Module Identification

Module Number Module Name CP (Effort)
MV-TM-257-M-4 Contact Mechanics 3.0 CP (90 h)

Basedata

CP, Effort 3.0 CP = 90 h
Position of the semester 1 Sem. in WiSe
Level [4] Bachelor (Specialization)
Language [DE] German
Module Manager
Lecturers
Area of study [MV-LTM] Applied Mechanics
Reference course of study [MV-88.808-SG] M.Sc. Computational Engineering
Livecycle-State [NORM] Active

Courses

Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
2V MV-TM-86026-K-4
Contact Mechanics
P 28 h 62 h - - PL1 3.0 WiSe
  • About [MV-TM-86026-K-4]: Title: "Contact Mechanics"; Presence-Time: 28 h; Self-Study: 62 h

Examination achievement PL1

  • Form of examination: oral examination (30-45 Min.)
  • Examination Frequency: each semester
  • Examination number: 10026 ("Contactmechanics")

Evaluation of grades

The grade of the module examination is also the module grade.


Contents

  • Kinematic and static contact conditions
  • Hertz-Signorini-Moreau condition, Karush-Kuhn-Tucker condition
  • Hertzian contact theory
  • Friction laws
  • Signorini problem for infinitesimal deformations
  • Variational inequalities for contact problems
  • Existence and uniqueness of solutions
  • Finite element discretization
  • Solution of discrete variational inequalities (penalty method, method of Lagrangian multipliers, relaxation method with projection)
  • Dynamic contact problems with friction

Competencies / intended learning achievements

Students will be able to
  • describe kinematic and static contact conditions for mechanical contact problems
  • derive variational inequalities from principle of minimum potential energy for contact problems
  • select finite element spaces for discretization
  • describe and select (analytical and especially numerical) solution methods for contact problems
  • implement numerical contact algorithms in Julia, Python or Matlab/Octave for 1D, 2D and 3D contact problems
  • evaluate solutions of contact problems

Literature

  • N. Kikuchi u. J.T. Oden: Contact Problems in Elasticity, SIAM Philadelphia 1988
  • P. Wriggers: Computational Contact Mechanics, J. Wiley, New York 2002
  • K. Willner: Kontinuums- u. Kontaktmechanik, Springer, Berlin 2003
  • T.A. Laursen: Computational Contact and Impact Mechanics, Springer, Berlin, 2003

Requirements for attendance (informal)

Basic lectures in applied mechanics

Modules:

Requirements for attendance (formal)

None

References to Module / Module Number [MV-TM-257-M-4]

Module-Pool Name
[MV-ALL-MPOOL-6] Wahlpflichtmodule allgemein
[MV-CE-MPOOL-6] Wahlpflichtmodule Computational Engineering