Module Handbook

  • Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020 verabschiedet.

Ausnahmen:

Module MV-TM-143-M-4

Non-linear Finite Elements (M, 6.0 LP)

Module Identification

Module Number Module Name CP (Effort)
MV-TM-143-M-4 Non-linear Finite Elements 6.0 CP (180 h)

Basedata

CP, Effort 6.0 CP = 180 h
Position of the semester 1 Sem. in WiSe
Level [4] Bachelor (Specialization)
Language [DE/EN] German or English as required
Module Manager
Lecturers
Area of study [MV-LTM] Applied Mechanics
Reference course of study [MV-88.808-SG] M.Sc. Computational Engineering
Livecycle-State [NORM] Active

Courses

Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
2V+2U MV-TM-86013-K-4
Non-linear Finite Elements
P 56 h 124 h - - PL1 6.0 WiSe
  • About [MV-TM-86013-K-4]: Title: "Non-linear Finite Elements"; Presence-Time: 56 h; Self-Study: 124 h

Examination achievement PL1

  • Form of examination: oral examination (45-60 Min.)
  • Examination Frequency: each semester
  • Examination number: 10013 ("Nonlinear Finite Element Methods")

Evaluation of grades

The grade of the module examination is also the module grade.


Contents

  • Non-linear phenomena in mechanics
  • Continuum description of elastic materials at finite deformations
  • The weak form of equilibrium in the reference configuration as well as in the current configuration
  • Linearization
  • Isoparametric concept
  • Discretization in the reference configuration as well as in the current configuration
  • Implementation of Von-Mises plasticity at small strains
  • Time integration of internal variables
  • Iterative solution strategies for time-independent, non-linear problems

Competencies / intended learning achievements

1. Lecture
  • Students are able to classify non-linear phenomena
  • Students are able to solve non-linear problems by means of the Finite Element Method
  • Students understand how to perform time integration for internal variables
  • Students know how to choose suitable numerical strategies for non-linear systems of equations
  • Students know how to interpret the results of non-linear Finite Element computations

2. Exercise

  • Students are able to derive the weak forms of non-linear differential equations
  • Students are able to linearize these equations
  • Students are able to program finite elements with the software DAEdalon and Matlab
  • Students can interpret and analyze the results of non-linear Finite Element simulations
  • Students are able to explain and discuss their results and implementations to other participants

Literature

  • Bathe: Finite Element Methoden, Springer
  • Belytschko, Liu, Moran: Nonlinear Finite Elements for Continua and Structures, Wiley 2000
  • Crisfield: The Finite Element Method - Non-linear Finite Element Analysis of Solids and Structures, Wiley 1991
  • Hughes: The Finite Element Method, Prentice Hall
  • Wriggers: Nichtlineare Finite-Element-Methoden, Springer
  • Zienkiewicz, Taylor: The Finite Element Method: The Basis, Butterworth-Heinemann
  • Zienkiewicz, Taylor: The Finite Element Method: Solid Mechanics, Butterworth-Heinemann

Requirements for attendance (informal)

Applied Mechanics, Continuum Mechanics, Non-linear Continuum Mechanics, Finite Elements

Requirements for attendance (formal)

None

References to Module / Module Number [MV-TM-143-M-4]

Course of Study Section Choice/Obligation
[MV-88.808-SG] M.Sc. Computational Engineering Pflichtmodule [P] Compulsory
Module-Pool Name
[MV-ALL-MPOOL-6] Wahlpflichtmodule allgemein
[MV-MBINFO-MPOOL-6] Wahlpflichtmodule Maschinenbau mit angewandter Informatik