Module Handbook

  • Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020 verabschiedet.

Ausnahmen:

Module MV-TM-100-M-4

Selected Topics of Mechanics (M, 3.0 LP)

Module Identification

Module Number Module Name CP (Effort)
MV-TM-100-M-4 Selected Topics of Mechanics 3.0 CP (90 h)

Basedata

CP, Effort 3.0 CP = 90 h
Position of the semester 1 Sem. in SuSe
Level [4] Bachelor (Specialization)
Language [DE] German
Module Manager
Lecturers
Area of study [MV-LTM] Applied Mechanics
Livecycle-State [NORM] Active

Notice

In each summer semester, one of the courses is offered in consultation with the lecturer.

Courses

Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
2V MV-TM-86016-K-4
Introduction to Tensor Calculus and Shell Theory
WP 28 h 62 h - - PL1 3.0 irreg. SuSe
2V MV-TM-86017-K-4
Micromechanics
WP 28 h 62 h - - PL1 3.0 irreg. SuSe
2V MV-TM-86018-K-4
Theory of Plasticity
WP 28 h 62 h - - PL1 3.0 irreg. SuSe
  • About [MV-TM-86016-K-4]: Title: "Introduction to Tensor Calculus and Shell Theory"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TM-86017-K-4]: Title: "Micromechanics"; Presence-Time: 28 h; Self-Study: 62 h
  • About [MV-TM-86018-K-4]: Title: "Theory of Plasticity"; Presence-Time: 28 h; Self-Study: 62 h

Examination achievement PL1

  • Form of examination: oral examination (30-45 Min.)
  • Examination Frequency: each semester
  • Examination number: 10010 ("Selected Topics of Mechanics")

Evaluation of grades

The grade of the module examination is also the module grade.


Contents

  • Euclidean vector space
  • covariant and contravariant coordinates
  • vector and tensor algebra in curvilinear coordinates
  • covariant derivatives, vector and tensor analysis
  • membrane and bending theory for shells
  • defects in materials
  • Eshelby solution for inclusions and inhomogeneities
  • analytical homogenization
  • numerical homogenization
  • fundamentals of plastic deformation
  • von Mises, Tresca, and Mohr yield surfaces
  • associated and not associated flow rules
  • rate dependent and rate independent plasticity

Competencies / intended learning achievements

Students are able to
  • state fundamental principles of tensor calculus
  • apply tensor calculus to curvilinear coordinates
  • formulate and solve problems in differential geometry
  • analyze shell problems via membrane and bending theory
Students are able to
  • model defect in materials
  • state the properties of the Eshelby solution
  • apply the Eshelby solution to inclusions and inhomogeneities
  • compare and apply analytical homogenization methods
  • state and apply numerical homogenization methods
Students are able to
  • state fundamentals of plastic deformation
  • state, discuss, and apply the von Mises, Tresca, and Mohr yield surfaces
  • describe and apply associated and not associated flow rules
  • formulate, apply, and numerically implement rate dependent and rate independent plasticity models

Literature

  • E. Klingbeil: Tensorrechnung für Ingenieure, B.I.-Hochschultaschenbuch
  • D. Gross, Th. Seelig: Bruchmechanik - Mit einer Einführung in die Mikromechanik, Springer
Will be announced in the lecture.

Requirements for attendance (informal)

Basic knowledge in applied mechanics and higher mathematics

Requirements for attendance (formal)

None

References to Module / Module Number [MV-TM-100-M-4]

Module-Pool Name
[MV-ALL-MPOOL-6] Wahlpflichtmodule allgemein
[MV-BioVT-MPOOL-6] Wahlpflichtmodule Bioverfahrenstechnik
[MV-CE-MPOOL-6] Wahlpflichtmodule Computational Engineering