Module Handbook

  • Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020, bzw. am 13.01.2021 verabschiedet.

Ausnahmen:

Module MV-BEMT-7-M-4

Applied Mechanics (M, 9.0 LP)

Module Identification

Module Number Module Name CP (Effort)
MV-BEMT-7-M-4 Applied Mechanics 9.0 CP (270 h)

Basedata

CP, Effort 9.0 CP = 270 h
Position of the semester 2 Sem. from WiSe
Level [4] Bachelor (Specialization)
Language [DE] German
Module Manager
Lecturers
Area of study [MV-LTM] Applied Mechanics
Reference course of study [MV-47.108-SG] B.Ed. LaBBS Metals Technology
Livecycle-State [NORM] Active

Courses

Type/SWS Course Number Title Choice in
Module-Part
Presence-Time /
Self-Study
SL SL is
required for exa.
PL CP Sem.
3V+1U MV-TM-86020-K-4
Elements of Applied Mechanics I
P 56 h 94 h - - PL1 5.0 WiSe
2V+1U MV-TM-86021-K-4
Elements of Applied Mechanics II
P 42 h 78 h - - PL2 4.0 SuSe
  • About [MV-TM-86020-K-4]: Title: "Elements of Applied Mechanics I"; Presence-Time: 56 h; Self-Study: 94 h
  • About [MV-TM-86021-K-4]: Title: "Elements of Applied Mechanics II"; Presence-Time: 42 h; Self-Study: 78 h

Examination achievement PL1

  • Form of examination: written exam (Klausur) (90 Min.)
  • Examination Frequency: each semester
  • Examination number: 10020 ("Elements of Applied Mechanics I")
    Klausurdauer soll über PO-Änderung auf 75-105 Min angepasst werden.

Examination achievement PL2

  • Form of examination: written exam (Klausur) (90 Min.)
  • Examination Frequency: each semester
  • Examination number: 10021 ("Elements of Applied Mechanics II")
    Klausurdauer soll über PO-Änderung auf 75-105 Min angepasst werden.

Evaluation of grades

All partial module examinations have to be passed. The module grade is the weighted average of the partial examination grades according to the following weights:

Gewichtung nach Leistungspunkten

Contents

  • fundamental concepts regarding the statics of rigid bodies (force, classification of forces)
  • forces with common point of origin (equilibrium on a plane)
  • general systems of forces (force groups on a plane)
  • centroid of loads, bodies, volumes, surfaces and lines
  • bearing and joint reactions (static and kinematic determinacy)
  • trusses (zero force bars, method of joints and sections)
  • beams, frames, arches (forces on cuts)
  • fundamental concepts of elastostatics
  • tension compression in bars (stress, strain, material law, bar systems)
  • concept of work for bar systems (principle of work and energy, strain energy, principle of virtual forces)
  • stress state (transformation relations, principal stresses, Mohr’s circle)
  • strain state (strain and shear)
  • law of elasticity and strength hypothesis
  • beam bending (moment of inertia of area, ordinary bending)
  • kinetics of particles and rigid bodies
  • velocity and acceleration (Cartesian, polar, and natural coordinates)
  • plane motion of rigid bodies (instantaneous center of rotation)
  • relative motion (kinematics)
  • dynamics of particles and particle systems (principle of linear and angular momentum, principle of work and energy, impact, gravitation, planetary motion)
  • dynamics of rigid bodies (principle of linear and angular momentum, principle of work and energy, mass moment of inertia, impact, Euler rotation equations)

Competencies / intended learning achievements

Die Studierenden verstehen die wesentlichen Grundlagen der Technischen Mechanik und deren Anwendung in der Technik, insbesondere in den für berufsbildenden Schulen wichtigen Gebiete, und beherrschen deren grundlegende Methodik.
1. Lecture

Students are able to

  • describe fundamental concepts regarding statics (force and torque)
  • classify structural elements regarding their load-bearing behavior
  • compute resultants of load systems and distributed volume, area, and line forces
  • label forces on cuts of structures
  • compute the deformation behavior of bars and bar systems
  • compute the deformation of elastic bars and bar systems via energy methods and the principle of virtual forces
  • explain the terms stress and strain for one and also higher dimensions
  • describe the elastic material law for one and also higher dimensions
  • analyze the deformation behavior and stress distribution in a beam

2. Tutorial

Students are able to

  • analyze systems by cuts and equilibrium conditions
  • compute bearing and joint reactions
  • compute the centroid of loads and bodies
  • compute forces on cuts of structures
  • compute the deformation of bar systems via displacement diagrams
  • compute the deformation of bar systems via energy methods and the principle of virtual forces
  • analyze homogeneous plane and three-dimensional stress states
  • compute moments of inertia of area
  • analyze structures of bars and beams with respect to deformation and stress distribution
  • present and discuss their results among themselves
1. Lecture

Students are able to

  • define velocity and acceleration
  • analyze the kinematics of particles and rigid bodies
  • formulate the equations of motion for particles, system of particles and rigid bodies
  • solve the equations of motion via integration
  • analyze motion in moving frames of reference

2.Tutorial

Students are able to

  • compute velocity and acceleration states in different coordinate systems
  • compute velocity and acceleration states with respect to moving frames of reference
  • apply the principle of linear and angular momentum as well as the principle of work and energy to particles, particle systems, and rigid bodies
  • formulate the equations of motion via free body diagrams
  • compute motions by solving the equations of motion considering initial conditions
  • analyze impacts
  • formulate kinetic equations in moving frames of reference
  • present and discuss their results among themselves

Literature

Gross, Hauger, Schröder, Wall: Technische Mechanik, Band 1 und Band 2, Springer Verlag;

Gross, Ehlers, Wriggers, Müller: Formeln und Aufgaben zur Technischen Mechanik 1 - Statik, Springer Verlag;

Gross, Ehlers, Wriggers, Schröder, Müller: Formeln und Aufgaben zur Technischen Mechanik 2 – Elastostatik, Hydrostatik, Springer;

Hagedorn: Technische Mechanik, Band 1 und Band 2, Verlag Harry Deutsch;

  • Gross, Hauger, Schröder, Wall: Technische Mechanik 3 – Kinetik, Springer
  • Gross, Ehlers, Wriggers, Schröder, Müller: Formeln und Aufgaben zur Technischen Mechanik 3 Kinetik, Hydrodynamik, Springer
  • Hagedorn: Technische Mechanik 3 – Dynamik, Verlag Harri Deutsch

Requirements for attendance of the module (informal)

None

Requirements for attendance of the module (formal)

None

References to Module / Module Number [MV-BEMT-7-M-4]

Course of Study Section Choice/Obligation
[MV-47.108-SG] B.Ed. LaBBS Metals Technology [Fundamentals] Lehramt an berufsbildenden Schulen [P] Compulsory
[MV-B5.108-SG] ZEP LaBBS Metals Technology [Fundamentals] Lehramt an berufsbildenden Schulen [P] Compulsory