 propositions, sets, methods of proof, mappings, semiorderings and equivalence relations,
 integers, division with remainder, greatest common divisor and Euclidean algorithm, fundamental theorem of arithmetic, Chinese remainder theorem over ℤ,
 groups, orbit equation, symmetry groups, normal subgroup and quotient group, applications (e.g. counting isomorphism classes of graphs),
 rings, polynomial rings, unity group of ℤ/nℤ, applications (e.g. public key cryptography, Pollard factorization, DiffieHellman key exchange), ideals and quotient rings, integral domains and fields, finite fields, Euclidean rings, Chinese remainder theorem, applications (e.g. modular computing, interpolation),
 vector spaces, Gaussian algorithm, bases and dimension, vector space homomorphisms, solving linear systems of equations, representing matrix of a homomorphism, algorithms for kernel and image,
 isomorphisms, base change, application (e.g. wavelet transformation), classification of homomorphisms, homomorphism theorem, applications (e.g. linear codes), determinants, eigenvectors, applications (e.g. pagerank algorithm).
Module MAT0211M1
Mathematics for Computer Science Students: Algebraic Structures (M, 8.0 LP)
Module Identification
Module Number  Module Name  CP (Effort) 

MAT0211M1  Mathematics for Computer Science Students: Algebraic Structures  8.0 CP (240 h) 
Basedata
CP, Effort  8.0 CP = 240 h 

Position of the semester  1 Sem. in WiSe/SuSe 
Level  [1] Bachelor (General) 
Language  [DE] German 
Module Manager  
Lecturers 
+ further Lecturers of the department Mathematics

Area of study  [MATService] Mathematics for other Departments 
Reference course of study  [INF82.79SG] B.Sc. Computer Science 
LivecycleState  [NORM] Active 
Courses
Type/SWS  Course Number  Title  Choice in ModulePart  PresenceTime / SelfStudy  SL  SL is required for exa.  PL  CP  Sem.  

4V+2U  MAT0211K1  Mathematics for Computer Science Students: Algebraic Structures
 P  84 h  156 h 
USchein
 ja  PL1  8.0  WiSe/SuSe 
 About [MAT0211K1]: Title: "Mathematics for Computer Science Students: Algebraic Structures"; PresenceTime: 84 h; SelfStudy: 156 h
 About [MAT0211K1]: The study achievement [USchein] proof of successful participation in the exercise classes (ungraded) must be obtained. It is a prerequisite for the examination for PL1.
Examination achievement PL1
 Form of examination: written exam (Klausur) (120150 Min.)
 Examination number: 81041 ("Algebraic Structures")
Evaluation of grades
The grade of the module examination is also the module grade.
Contents
Competencies / intended learning achievements
Upon successful completion of this module, the students have achieved the following learning outcomes:
 The students know the fundamental formation of mathematical concepts and basic proof methods in mathematics (in particular, proof by contraposition and proof by induction).
 On the basis of a structureoriented approach, they are trained in analytical thinking and their ability to think abstractly has been promoted.
 They have learned to comprehend mathematical proofs and are able to prove or disprove mathematical statements independently in simple examples.
 They know and understand the basic concepts of elementary number theory, algebra and linear algebra. Through an algorithmic approach they have learned the fundamental statements and methods of these fields and are able to apply them to problems in computer science.
 In the exercise classes they have acquired a confident, precise and independent handling of the terms, statements and methods from the lecture.
 In addition, their presentation skills and ability to work in a team have been promoted.
Literature
 G. Fischer: Lineare Algebra,
 S. Bosch: Lineare Algebra,
 K. Jänich: Linear Algebra,
 J. Böhm: Grundlagen der Algebra und Zahlentheorie,
 B. Kreußler, G. Pfister: Mathematik für Informatiker: Algebra, Analysis, Diskrete Strukturen,
 V. Shoup: A Computational Introduction to Number Theory and Algebra.
Registration
Registration for the exercise classes via the online administration system URM (https://urm.mathematik.unikl.de).
Requirements for attendance (informal)
none
Requirements for attendance (formal)
None
References to Module / Module Number [MAT0211M1]
Course of Study  Section  Choice/Obligation 

[INF82.79SG] B.Sc. Computer Science  Theoretical Foundations  [P] Compulsory 