Module Handbook

  • Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020, bzw. am 13.01.2021 verabschiedet.


Course MV-TM-86013-K-4

Non-linear Finite Elements (2V+2U, 6.0 LP)

Course Type

SWS Type Course Form CP (Effort) Presence-Time / Self-Study
- K Lecture with exercise classes (V/U) 6.0 CP 124 h
2 V Lecture 28 h
2 U Lecture hall exercise class 28 h
(2V+2U) 6.0 CP 56 h 124 h


CP, Effort 6.0 CP = 180 h
Position of the semester 1 Sem. in WiSe
Level [4] Bachelor (Specialization)
Language [DE/EN] German or English as required
Area of study [MV-LTM] Applied Mechanics
Additional informations
Livecycle-State [NORM] Active


  • Non-linear phenomena in mechanics
  • Continuum description of elastic materials at finite deformations
  • The weak form of equilibrium in the reference configuration as well as in the current configuration
  • Linearization
  • Isoparametric concept
  • Discretization in the reference configuration as well as in the current configuration
  • Implementation of Von-Mises plasticity at small strains
  • Time integration of internal variables
  • Iterative solution strategies for time-independent, non-linear problems

Competencies / intended learning achievements

1. Lecture
  • Students are able to classify non-linear phenomena
  • Students are able to solve non-linear problems by means of the Finite Element Method
  • Students understand how to perform time integration for internal variables
  • Students know how to choose suitable numerical strategies for non-linear systems of equations
  • Students know how to interpret the results of non-linear Finite Element computations

2. Exercise

  • Students are able to derive the weak forms of non-linear differential equations
  • Students are able to linearize these equations
  • Students are able to program finite elements with the software DAEdalon and Matlab
  • Students can interpret and analyze the results of non-linear Finite Element simulations
  • Students are able to explain and discuss their results and implementations to other participants


  • Bathe: Finite Element Methoden, Springer
  • Belytschko, Liu, Moran: Nonlinear Finite Elements for Continua and Structures, Wiley 2000
  • Crisfield: The Finite Element Method - Non-linear Finite Element Analysis of Solids and Structures, Wiley 1991
  • Hughes: The Finite Element Method, Prentice Hall
  • Wriggers: Nichtlineare Finite-Element-Methoden, Springer
  • Zienkiewicz, Taylor: The Finite Element Method: The Basis, Butterworth-Heinemann
  • Zienkiewicz, Taylor: The Finite Element Method: Solid Mechanics, Butterworth-Heinemann


PowerPoint presentation, blackboard

Requirements for attendance (informal)

Applied Mechanics, Continuum Mechanics, Non-linear Continuum Mechanics, Finite Elements

Requirements for attendance (formal)


References to Course [MV-TM-86013-K-4]

Module Name Context
[MV-TM-143-M-4] Non-linear Finite Elements P: Obligatory 2V+2U, 6.0 LP
[PHY-SP-4-M-7] Schwerpunktmodul Technische Mechanik WP: Obligation to choose 2V+2U, 6.0 LP