Module Handbook

• Dynamischer Default-Fachbereich geändert auf MV

Notes on the module handbook of the department Mechanical and Process Engineering

Die hier dargestellten veröffentlichten Studiengang-, Modul- und Kursdaten des Fachbereichs Maschinenbau und Verfahrenstechnik ersetzen die Modulbeschreibungen im KIS und wuden mit Ausnahme folgender Studiengänge am 28.10.2020, bzw. am 13.01.2021 verabschiedet.

Ausnahmen:

Course MV-TM-86005-K-4

Course Type

SWS Type Course Form CP (Effort) Presence-Time / Self-Study
- K Lecture with exercise classes (V/U) 6.0 CP 124 h
3 V Lecture 42 h
1 U Lecture hall exercise class 14 h
(3V+1U) 6.0 CP 56 h 124 h

Basedata

SWS 3V+1U 6.0 CP = 180 h 1 Sem. in WiSe [4] Bachelor (Specialization) [DE] German Sator, Christian, Dr.-Ing. (WMA | DEPT: MV) [MV-LTM] Applied Mechanics [NORM] Active

Contents

• Basic concepts of (linear) continuum mechanics
• Stress and Equilibrium
• Deformation and Strains
• Material Behaviour (Linear Elastic Solid)
• Two-Dimensional Problems (Plane Strain / Plane Stress / Airy Stress Function / Problem Solution)
• Plate Theory
• Three-Dimensional Problems
• Variational Principles and Energy Methods

Competencies / intended learning achievements

1. Lecture
• Students are familiar with basic concepts and fundamental quantities of continuum mechanics
• Students are able to explain concepts of Stresses and Strains
• Students are familiar with the material behaviour of (linear) elastic materials
• Students are able to formulate boundary value problems
• Students are able to explain the deformational behaviour of plane and plate problems
• Students are able to explain and use variational principles and energy methods in order to solve boundary value problems of elastic materials

2. Assignments

• Students are familiar with basic concepts and fundamental quantities of continuum mechanics
• Students are able to explain concepts of Stresses and Strains
• Students are familiar with the material behaviour of (linear) elastic materials
• Students are able to formulate boundary value problems
• Students are able to analyse the stress and strain states of plane and plate problems
• Students are able to explain and use variational principles and energy methods in order to solve boundary value problems of elastic materials
• Students are able to explain and discuss their results and implementations to other participants

Literature

• Becker, Gross: Mechanik elastischer Körper und Strukturen, Springer
• Eschenauer, Schnell: Elastizitätstheorie I, B.I. Wissenschaftsverlag
• Gurtin: The linear theory of elasticity, Truesdell, Clifford A.
• Holzapfel: Nonlinear Solid Mechanics – A Continuum Approach for Engineering, Wiley
• Kienzler, Schröder: Einführung in die Höhere Festigkeitslehre, Springer
• Fung Tong: Classical and Computational Solid Mechanics, World Scientific
• R. Ogden: Non-linear elastic deformations, Dover Publications 1984

Materials

Slides, help sheets

Requirements for attendance (informal)

Basic knowledge of higher mathematics and

None

References to Course [MV-TM-86005-K-4]

Module Name Context
[MV-TM-142-M-4] Continuum Mechanics P: Obligatory 3V+1U, 6.0 LP
[PHY-SP-4-M-7] Schwerpunktmodul Technische Mechanik WP: Obligation to choose 3V+1U, 6.0 LP