Course MAT-00-031-K-1
Higher Mathematics; Differential Equations (for Engineering Students) (2V+1U, 4.0 LP)
Course Type
SWS | Type | Course Form | CP (Effort) | Presence-Time / Self-Study | |
---|---|---|---|---|---|
- | K | Lecture with exercise classes (V/U) | 4.0 CP | 78 h | |
2 | V | Lecture | 28 h | ||
1 | U | Exercise class (in small groups) | 14 h | ||
(2V+1U) | 4.0 CP | 42 h | 78 h |
Basedata
SWS | 2V+1U |
---|---|
CP, Effort | 4.0 CP = 120 h |
Position of the semester | 1 Sem. in WiSe |
Level | [1] Bachelor (General) |
Language | [DE] German |
Lecturers |
Lecturers of the department Mathematics
|
Area of study | [MAT-Service] Mathematics for other Departments |
Livecycle-State | [NORM] Active |
Possible Study achievement
- Verification of study performance: proof of successful participation in the exercise classes (ungraded)
- Details of the examination (type, duration, criteria) will be announced at the beginning of the course.
Contents
Basic concepts for the treatment of ordinary and partial differential equations:
A. Ordinary differential equations:
- first-order differential equations: existence and uniqueness, first-order autonomous differential equations, separation approach, variation of constants, explicitly solvable cases, initial value problems;
- linear differential equations: homogeneous linear systems, matrix-exponential function, variation of constants, differential equations of nth order.
B. Partial differential equations:
- classification and well-posedness of 2nd order partial differential equations;
- wave equation, Poisson's equation, Fourier transform;
- solution methods: separation approach, Fourier transformation.
C. Numerical solution of differential equations:
- single step method (implicit/explicit);
- Runge-Kutta method;
- step size control.
Registration
Registration for the exercise classes via the online administration system URM (https://urm.mathematik.uni-kl.de).
Requirements for attendance (informal)
Modules:
Requirements for attendance (formal)
None
References to Course [MAT-00-031-K-1]
Module | Name | Context | |
---|---|---|---|
[BI-BSCBI-018-M-4] | Höhere Mathematik für Bauingenieure III - Differentialgleichungen | P: Obligatory | 2V+1U, 4.0 LP |
[MAT-00-03A-M-1] | Higher Mathematics: Vector Analysis and Differential Equations (for Engineering Students) | P: Obligatory | 2V+1U, 4.0 LP |
[MAT-00-03C-M-1] | Higher Mathematics: Differential Equations and Numerics (for Engineering Students) | P: Obligatory | 2V+1U, 4.0 LP |